Quantitative single-cell characterization of CAR+ T cell effector functions
نویسندگان
چکیده
Adoptive cell therapy (ACT) utilizing chimeric antigen receptor (CAR) T cells rendered specific for CD19 have demonstrated significant anti-tumor effects in patients with CD19+ chronic lymphocytic leukemia (CLL). In spite of the clinical promise of ACT in achieving complete responses, their efficacy remains unpredictable and new approaches are needed to address a priori define the therapeutic potential of T-cell based therapies. In our current work, we characterize the in vitro functionality of CD19-specific (CD19RCD28) CAR+ T cells propagated using artificial antigen presenting cells expressing membrane bound IL-21, by employing a novel methodology single-cell nanowell screening that determines their cytotoxic ability and cytokine secretion capability at single-cell resolution. We show that CAR+ T cells exert specific cytotoxicity against NALM6 cells (31 ± 8 %) when co-incubated at a 1:1 ratio in nanowell containers. Furthermore, single CAR+ T cells were capable of engaging and killing multiple targets; 17 ± 8% of T cells killed two target cells and 9 ± 3% killed three target cells within the 6 hour window of observation. In parallel, microengraving was used to determine the cytokine secretion profile of these same cells. Hierarchical clustering of the two functions indicated that interferongamma (IFNg) secretion is not correlated to cytotoxicity or the ability of T cells to kill multiple target cells. Simultaneously, monitoring apoptosis on CAR+ T cells allowed us to quantify their activation-induced cell death (AICD). CAR+ T cells that secreted IFNg upon target ligation did not undergo AICD whereas T cells that engaged in repeated killing showed an increased propensity to undergo AICD (p = 0.04). Dynamic time-lapse imaging of the interactions between CAR+ T cells and tumor cells indicated that the majority of CAR+ T cells have high basal motility, form long-lived interactions with tumor cells (50 100 min) that lead to motility arrest and subsequent tumor-cell apoptosis. However, contact lifetimes or overall contact duration were not reliable predictors of subsequent tumor-cell apoptosis. Finally, kinetics of serial killing suggest that motile CAR+ T cells that form short-lived contacts exhibit rapid killing with very little motility arrest in vitro. In summary, our SNS based methodology allows the deep functional characterization of clinical grade CAR+ T cells and can be used to: (1) determine in vitro functions of CAR+ T cells that correlate with clinical efficacy and (2) inform CAR design to maximize effector functionality while minimizing AICD.
منابع مشابه
ساخت گیرنده کایمریک لنفوسیت T دارای کمک محرک OX40 علیه سلولهای سرطان سینه
Background and Objective: Chimeric antigen T cell receptors provide a good approach for adoptive immunotherapy of cancer. In this new kind of chimeric T cell receptor, nanobodies are replaced as variable fragment of T cell receptor. Nanobodies (VHH) are the smallest fragments of antibodies that have great homology to human VH and low immunogenic potential. VHH-hing-CD28-CD3و construct was made ...
متن کاملDesign and development of CAR-T cells for cancer therapy
Introduction: Today, treatment with CAR-T cells is accepted as an effective treatment for blood malignancies. CAR-T cells are autologous T cells that are engineered by gene transfer techniques to express a chimeric antigen receptor (CAR). Despite the promising results and the approval of six CAR-T cell products; these products have not yet been approved for solid tumors. In addition, the high c...
متن کاملDifferent Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.
This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells...
متن کاملFunctional and molecular characterization of single serial killer CAR+ T cells demonstrates adaptive modification of behavior and fate based on tumor cell density
T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We developed Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to dynamically analyze thousa...
متن کاملEffect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells
Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...
متن کامل